

# LAND SUBSIDENCE REBOUND CAPABILITY

RICHARD TANNER DETESTA DEPARTMENT OF ENVIRONMENTAL SCIENCES

# INTRODUCTION

- Groundwater withdrawal rates are ulletat an all-time high
  - Due to increased agricultural need
- When extraction rate exceeds ulletinfiltration rate (replenishing) ground subsidence occurs
- The compression from subsidence • can be characterized into three main layers that determine rebounding
- The first layer experiences greatest ulletdeformation
- Best ability for rebound
- Second and third have more  $\bullet$ gradual and long-term subsidence
- The subsidence index, C<sub>w</sub>, • describes the soil compressibility during groundwater withdrawal
- This index could point to areas lacksquaremore vulnerable to permanent groundwater subsidence
- It also correlates depth of aquifers • with pressure to account for "recovery periods" of land subsidence

# **METHODS**

- Interpreting the data found on soil type and depth and subsidence index
- Correlate this to soil types and ulletaquifer depths
- Determine the possibly recovery ullettime of land subsidence in this region using this index

# RESULTS



| Samples        | Experimental deformation (mm) | Theoretical deformation (mm) | $\Delta u_1$ (kPa) |  |
|----------------|-------------------------------|------------------------------|--------------------|--|
| Sample 1       | 0.250                         | 0.298                        | 88-0               |  |
| Sample 2       | 0.225                         | 0.220                        | 100-0              |  |
| Sample 3       | 0.078                         | 0.072                        | 100-0              |  |
| Sample 4       | 0.063                         | 0.061                        | 100-0              |  |
| Sample 5       | 0.032                         | 0.039                        | 100-0              |  |
| Sample 6 0.043 |                               | 0.048                        | 100-0              |  |

| Sample   | Total stress (kPa) | $\Delta u_1$ (kPa) 0~100 | $\Delta u_2$ (kPa) 100~200 | $\Delta u_3$ (kPa) 200~400 | $\Delta u_4$ (kPa) 400~600 | Recovery process |
|----------|--------------------|--------------------------|----------------------------|----------------------------|----------------------------|------------------|
| Sample 1 | 240                | 88-0                     |                            |                            |                            | 0-88             |
| Sample 2 | 448                | 176-76                   | 76–0                       |                            |                            | 0-176            |
| Sample 3 | 844                | 361-261                  | 261-161                    | 161-0                      |                            | 0-361            |
| Sample 4 | 1013               | 464-364                  | 364-264                    | 264-64                     |                            | 64-464           |
| Sample 5 | 1456               | 645-545                  | 545-445                    | 445-245                    | 245-45                     | 45-645           |
| Sample 6 | 1570               | 723-623                  | 623-523                    | 523-323                    | 323-123                    | 123-723          |

| Sample   | Initial void ratio <i>e</i> 0 | Void ratio e | Subsidence index $C_w$ (kPa <sup>-1</sup> ) |
|----------|-------------------------------|--------------|---------------------------------------------|
| Sample 1 | 0.77                          | 0.7523       | 2.01E-4                                     |
| Sample 2 | 0.51                          | 0.4964       | 1.36E-4                                     |
| Sample 3 | 0.52                          | 0.5152       | 4.74E-5                                     |
| Sample 4 | 0.66                          | 0.6558       | 4.18E-5                                     |
| Sample 5 | 0.53                          | 0.5280       | 1.96E-5                                     |
| Sample 6 | 0.64                          | 0.6372       | 2.82E-5                                     |

### CONCLUSION

- The data shows that the lower  $\bullet$ depths of the water table the longer the recovery time
  - There is a corresponding increase in pressure with depth that does not allow for uncompressing of soil
- After the sampling points were past the unconfined aquifers, the second and third characterized layers there was less deformation but more pressure
- This pressure led to the longer rebound time of subsidence
- If this data corresponds to ulletconditions in California, when the water table begins to increase in depth there is more corresponding pressure that forces a longer rebounding period
  - This is where the irreversible damage occurs as the increase in pressure destroys compression of soil and allows limited rebound

# BIBLIOGRAPHY

Cao, Y., Wei, Y., Fan, W., Peng, M., & Bao, L. (2020). Experimental study of land subsidence in response to GROUNDWATER withdrawal and recharge in Changping District of Beijing. PLOS ONE, 15(5). doi:10.1371/journal.pone.0232828